
Board Game Strategies in Introductory Computer Science

Ivona Bezáková
Rochester Institute of

Technology
102 Lomb Memorial Drive

Rochester, NY 14623, U.S.A.
ib@cs.rit.edu.edu

James E. Heliotis
Rochester Institute of

Technology
102 Lomb Memorial Drive

Rochester, NY 14623, U.S.A.
jeh@cs.rit.edu.edu

Sean P. Strout
Rochester Institute of

Technology
102 Lomb Memorial Drive

Rochester, NY 14623, U.S.A.
sps@cs.rit.edu.edu

ABSTRACT
We present three open-ended freshman projects where stu-
dents design and implement their own player strategies for
well-established board games: Quoridor by Mirko Marchesi
(Gigamic), San Francisco Cable Cars by Dirk Henn (Queen
Games), and The aMAZEing Labyrinth by Max J. Kobbert
(Ravensburger). Unlike modern computer-based games,
most board games are inherently discrete. For example,
the board tends to have a fixed number of allowed posi-
tions for the game pieces and every player performs a search
through a finite number of possible moves to decide which
move to take next. As such, designing a player strategy for
a board game provides a very natural context for basic data
structures, searching algorithms, and other concepts typi-
cally covered in a freshman-level computer science sequence.
Furthermore, the project allows for continual improvements
to one’s strategy, targeting both beginners as well as more
advanced programmers.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms
Algorithms, Experimentation, Performance

Keywords
Introductory computer science, Learning in context, Basic
data structures and algorithms, Open-ended project

1. INTRODUCTION
Motivating a full class of students in a freshman computer

science course is challenging, especially if the students come
from a variety of backgrounds and previous programming ex-
periences. We address this situation by developing CS2-level
projects where students design and implement player strate-
gies for well-established (yet not necessarily widely known)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

board games. Board games provide a natural context for in-
troductory data structures and algorithms, as both the lay-
out of the game and the playing style (i. e., turn-taking) are
typically discrete. Depending on the game, it might require
the students to implement a graph search, or continually
update and search through a 2D data structure. Previous
research has demonstrated that learning to program in con-
text increases student motivation [23, 24].

The students implement player modules that compute
their players’ moves and keep track of the current game
state. We provide the“engine,”a program that makes round-
robin calls on the student modules to make their moves, en-
forces the rules of the game, and graphically displays the
current state of the game. It also informs the student mod-
ules of the other players’ moves so that the modules can
update their data structures to reflect the current state of
the game.

To achieve full credit we simply ask our students to consis-
tently beat an unsophisticated or random playing strategy
– we feel that this difficulty is compatible with a CS2-level
project. In other words, we do not base the actual grad-
ing on competitiveness. However, the motivated student has
the opportunity to keep improving their strategy and have it
tested against their classmates’ strategies in the end-of-term
tournament that we dubbed the “Battle Royale.” Our pre-
liminary findings indicate that board games not only provide
a suitable context but that programming player strategies
further increases student motivation by being open-ended
and providing opportunities for experimentation.

1.1 Related work
Games have been used as a motivation tool [2, 5, 6, 16]

in computer science curriculum for several decades and have
flourished into an active area in computer science educa-
tional research. The majority of approaches using games for
educational purposes fall into these categories: game design
and development (for a sample of recent publications, see,
e. g., [3, 25, 13, 17, 28]), and playing games to learn (e. g.,
[8]). “Game design and development” typically means to
implement a human-controlled game, not a player strategy,
with student excitement often stemming from the accompa-
nying multimedia experience [26, 19].

Our projects do not follow either approach – we use a
well-established board game to provide the context for the
concepts from introductory computer science courses and
ask the students to design and implement a player strat-
egy. As far as we know, the closest works related to our
projects are Davies’ Uno [22], the last part of Bayliss’ Un-
real Tournament [3], and Kurkovsky’s games for mobile de-SIGCSE’13, March 6–9, 2013, Denver, Colorado, USA.

Copyright © 2013 ACM 978-1-4503-1868-6/13/03...$15.00.

17

vices [14]. Davies’ Uno is a CS1 project where students
use variables, conditionals, and simple loops to experiment
with possible player strategies for the card game Uno. This
project provides an excellent context for introductory pro-
gramming concepts but, naturally since it addresses CS1
audience, not introductory data structures and algorithms.
Bayliss’ students spent the majority of the time implement-
ing the Unreal Tournament (i. e., doing game development),
with the last three weeks devoted to programming their own
bot behaviors. Unlike in our case, the nature of the game
is continuous where bots turn, move and face opponents in
shooting matches. In the end, the bot-behavior part received
much less attention than the traditional game development.

Similarly, Kurkovsky’s students focused on game develop-
ment, with a short amount of time devoted to programming
game elements reacting to the actions of a human player. In
this case the setup was also continuous and, moreover, the
students did not implement a strategy of a human player but
presumably a simpler behavior of various game creatures.

Summet, et al. [27] proposed an interesting context for
CS1 centered around programming robot strategies: their
students implemented various robot behaviors, using physi-
cal robot devices. However, the robots do not competitively
interact.

Another interesting group of recent publications centers
around using board games in CS1/2. Drake and Sung [7],
and Kurmas and Vanderhyde [15, 22] discuss an interesting
variety of board (and dice and card) games and their rele-
vance to CS1/2 topics; however, none of these works take
advantage of implementing player strategies. On the other
hand, player strategies for games like Tic-Tac-Toe are a fa-
vorite topic in introductory artificial intelligence courses [9].

2. THE BOARD GAMES
We briefly sketch the rules for all three board games; see

Figure 1 for snapshots of the games.

2.1 The aMAZEing Labyrinth
Designed by Max J. Kobbert and published by Ravens-

burger [12], the game consists of a 7x7 tiled area, where
every tile is an I-shaped, T-shaped, or L-shaped corridor.
Every other row and column can be shifted. There is an
extra tile that is used to do so, thereby changing the paths
in the labyrinth. Each player has a wizard with a distinct
home position on the board, plus a randomly generated list
of treasures to collect before returning home. Treasures are
depicted on some of the tiles and the treasure is collected
whenever a player’s wizard lands on the corresponding tile.
In every turn, a player first changes the board by inserting
the extra tile and then moves his or her wizard any distance
along an existing path. The game works for 2-4 players.

2.2 Quoridor
Designed by Mirko Marchesi and published by Gigamic

[20], this game consists of a 9x9 board and works for 2 or 4
players. Each player places a single piece in the middle of
one edge of the board. Its goal is to arrive somewhere along
the edge at the opposite side of the board. Additionally to
their piece, each player has ten walls of length 2. In each
move, a player either moves their piece to an adjacent loca-
tion, or places a wall. A wall must be aligned with the grid
lines and it cannot cross an already placed wall or extend
out of the board. Walls are used to obstruct and therefore

Figure 1: Labyrinth, Quoridor, and San Francisco
Cable Cars depicted by our engines. The figures
show games in progress, in each case a battle be-
tween the top two student players of the respective
academic year.

detour opponents’ movement. However, the wall placement
cannot completely block the opponent from reaching their
destination.

2.3 San Francisco Cable Cars
Designed by Dirk Henn (art by Michael Menzel) and pub-

18

lished by Queen Games [11], this game for 2-6 players is
played on an 8x8 initially empty board, with 32 cable car
stations distributed along the sides of the board. The rules
specify which stations belong to each player. Each player
gets a randomly drawn tile that specifies four connections,
each between two of the eight end-points on the tile’s sides.
In every move, a player rotates their tile and places it on
the board adjacently to an already placed tile or to a side of
the board. By doing so, the players build cable car routes
(theirs or their opponents’ – or both). The game finishes af-
ter all tiles have been placed and the player with the overall
longest cable car routes wins.

3. HOW THE PROJECT WORKS

3.1 The student module
The students implement three functions:

An initialization function. This function is called by the en-
gine at the beginning of the game. The parameters of the
function specify the initial state of the game, including the
number of players, the student’s player ID (to determine or-
der of play), the initial game layout (e. g., in Labyrinth, the
initial tile layout), etc. Students initialize their data struc-
tures accordingly – from this moment on the engine does
not communicate the current game state; it is the student’s
responsibility to keep track of it.

A move function. This function is called whenever it is the
student’s turn to move. The student returns a move object
specifying the move of their player.

An update function. This function informs the student of
other player’s moves, so that the student can update their
data structures accordingly.

As a side note, to help the students with their strategies
in Labyrinth, we opted to reveal the sequence of treasures
to be collected for each player. Similarly in Cable Cars, we
opted to reveal the tiles currently held by every player.

3.2 The engine
The engine starts by initializing all student modules. Then,

it calls the first player’s move function, followed by a call to
each player’s update function1, informing them of the first
player’s move. Then, the engine calls the second player’s
move function, followed by the update function of the other
players. This scenario continues until the game is over.

3.3 The project assignments
To guide the students during this project, we split it into

four assignments. Roughly speaking, the first assignment
is a “get started” part that asks the students to implement
some useful function, for example graph search in Labyrinth.
The second assignment is a “single player mode,” where the
students implement their move function but they do not
need to worry about other players yet. In the third assign-
ment, a “multi player mode,” the students update their data
structures based on other player’s moves – they need to be
able to play the full game. In the fourth “strategy” assign-
ment we ask the students to design and implement a strategy
that beats an unsophisticated player that we provide.

1Our design is evolving to inform the player module of its
own move as well. This allows us to sometimes provide ad-
ditional useful information, and it makes the student code’s
handling of game state updates more consistent.

We opted to have the students do the first assignment in-
dividually to fully understand how the engine works. For
the subsequent assignments they work in teams of two. We
devote three problem-solving (active learning) and labora-
tory sessions to the first three assignments, typically in the
second, fourth, and seventh week of the (10 week) quarter.

3.4 Battle Royale
On the Saturday between the end of classes and the start

of final exams, a friendly competition called Battle Royale
takes place. An auditorium is outfitted with computer
screens for the currently playing game and for a chart show-
ing the winners of each round. Pizza is provided in the area
just outside the auditorium for the students, instructors, and
their guests. This voluntary competition is completely out-
side of the grade scheme for the course itself. Instead, prizes
are awarded to the top teams (gift certificates at the college
book store).

3.5 Grading
We de-emphasized the competitive aspect of the project

for grading purposes – a correctly implemented strategy that
used basic data structures and searching algorithms eas-
ily earned a top score. (For a full score in functionality
we only require the player strategy to consistently beat the
weaker of the modules that we provide with the engine, i. e.,
a randomly playing strategy.) We based our decision to sup-
press competitiveness on research suggesting that underrep-
resented groups tend to dislike, and not perform well, in a
competitive environment [10]. We had very favorable expe-
rience with our proposed grading scheme: a vast majority of
the teams eventually beat the provided module, reporting to
have learned the underlying concepts and stating that the
project “was fun.”

4. WHY BOARD GAME STRATEGIES
We based the project on programming board game strate-

gies for a number of reasons:

Discrete context to demonstrate basic CS concepts. Board
games tend to be discrete. We argue that a discrete model
fits better with the introductory courses and basic concepts
such as searching algorithms and data structures ranging
through arrays, lists, queues, and graphs.

In the Labyrinth project students stored the data in a 2D
array (some even contemplated a 1D array) or as a graph
representing the labyrinth, using either the adjacency ma-
trix or adjacency lists. The variety led to a nice problem
solving discussion of advantages and drawbacks of each data
structure. Additionally, independently of the strategy, the
students needed to search for their current treasure, search
the tile layout for possible paths, and enumerate through
several possible moves (for example different insertion lo-
cations for the extra tile) to choose what they consider to
be the most appropriate move. Different strategies, ranging
from heuristics to searching through the configuration space
while anticipating the opponents’ moves, may be incorpo-
rated.

Similar algorithms and data structure concerns relate to
the Quoridor project. Even though the maze does not con-
tinually shift, the students needed to account for wall place-
ment. This added an interesting dimension as the students
needed to keep track of objects (game pieces) on the board

19

as well as on the grid lines (walls). Unlike in Labyrinth,
in Quoridor it is desirable to move along a shortest path,
requiring the students to implement this functionality.

Cable Cars brought a set of different programming con-
cerns. Since a cable route never splits, this project did not
require graph search – a simple linear traversal was enough.
The main hurdle to deal with was the representation of the
game state, namely the connections of the route segments
in the tiles placed on the board.

Established games. Board games are well-tested. If they
were not interesting, they would not achieve popularity. We
have found this preferable to the difficult task of inventing
games that are both well-designed and interesting [4].

Room for experimentation. There is a wide variety of strate-
gies. (If there were only one dominant strategy, the game
would loose its appeal.) Typically there are some obvious
strategies that are good enough to beat a random player, but
the teams have the option to go beyond the required part
of the project and experiment further. This means that the
project has a clearly defined objective, yet it is open-ended.

Variety. There is a wide variety of board games [1] to choose
from, allowing us to rotate through games and reduce the
risk of plagiarism from previous students.

Visual feedback. The students get immediate visual feedback
on the performance of their modules.

Why have we decided to have our students implement
player strategies instead of doing traditional game develop-
ment? While game development provides an interesting and
relevant context for basic computer science concepts (and
often for advanced concepts as well), the design of a player
strategy is much more open-ended, providing motivation to
complete the work, and to keep working on the project be-
yond the typical call of duty. Also, game development as-
signments often motivate students to put a lot of effort into
the multimedia experience [18]. This tendency is natural,
since the stimulation of the senses sparks student excite-
ment. However, in our experience multimedia development
can detract from data structures and algorithmic concepts.
By providing the engine which includes the graphics, we give
the students the satisfaction of a visual feedback, yet they
concentrate on the implementation of the concepts in the
underlying data structures and algorithms.

Another advantage of using a real-life established board
game is that we are able to show the students the physical
game and leave it in the student center for them to play (and
study its properties!) during their leisure time.

5. GAME SELECTION CRITERIA AND
EXPERIENCES

We started with the following list of selection criteria for
the board games.

• Reasonably simple rules.

• Underlying data structures and algorithms that fit within
the scope of CS2-level courses.

• Well-ranked at an on-line game review website [1].
(This implies the existence of a variety of strategies
and an overall appeal of the game.)

• Non-violent and ethnicity- and gender-neutral.

Over the years we started adding other criteria, that, while
not deal-breaking, influenced our game selection decisions.

• Playable by 2 and 4 players. Two player mode is im-
portant for our grading scheme (described below). The
four player mode is not as crucial but it became a Bat-
tle Royale tradition and it gives the students a chance
to play against multiple opponents at once and see
what that does to their strategies.

• Few ties. Some games (e. g., Tsuro [21]) often end up
in a tie, especially in the two player mode. This does
not make for an interesting strategy development or
match-watching.

• Not much randomness. If there is a lot of randomness,
the game might be fun for real people but the strategy
may not determine the winner.

• Some randomness. Quoridor does not include any ran-
domness and many students opted to not use a ran-
domized strategy. Thus, if there was a tie, we could
switch the starting order for a second match but the
third rematch was identical to one of the two earlier
matches. We are addressing this by including different
starting positions for the game.

• Game progress. With Labyrinth some students im-
plemented overly defensive strategies where a match
consisted of blocking the opponent from reaching their
destination. This led to never-ending games. We
started enforcing a maximum number of moves to solve
this issue, as well as limiting the amount of time allot-
ted for each player’s computation.

• Reasonable visual display. Thus far we avoided 3D
games, as well as games that do not use a bounded
play area (such as Carcassonne [29]).

6. COURSE SETUP AND STUDENT
DEMOGRAPHICS

We used The aMAZEing Labyrinth project in 2009/10,
the Quoridor project in 2010/11, and the San Francisco Ca-
ble Cars project in 2011/12. We used the projects in the
CS2 course in the winter quarter (December through Febru-
ary). The course covers introductory data structures and
algorithms such as graphs, breadth and depth first search,
backtracking, and hashing. The course was taken by 202
students in the first year, followed by about 350-400 stu-
dents in both subsequent years. The course is offered in
multiple sections of 50-60 students each, taught by a variety
of instructors (overall, 10 instructors have taught the course
so far). The majority of the students declared themselves as
computer science majors, followed by software engineering
majors, then computer engineering majors, as well as ap-
plied math and bioinformatics majors. Additionally, one or
two sections of the course were offered to up to 90 students
in the spring quarters. Thus far over a thousand students
have taken part in this project.

7. PRELIMINARY FINDINGS
The project motivated the students to understand basic

computer science concepts and see beyond the “computer
science is just programming” view that we frequently en-
counter with freshman students. Many students enjoyed
the experimenting part and were eager to learn more about
upper-level topics such as artificial intelligence. These senti-
ments are captured by the following sample of student com-
ments:

20

• I am proud of every part of this project. When in-
troduced to the idea at the beginning of the quarter I
was flabbergasted and did not believe I could accomplish
such a task but now that I have I am very confident that
computer science is where I belong.

• Being very interested in AI, I’ll probably return to this
program down the road as I learn more about artificial
intelligence.

• It was a fun project, and I might try to improve my
player to win more often, or at least not get closed in
so easily. I should probably stop making it rotate to the
left every time.

• Overall, it was a pretty good project.

• The project overall is very interesting and fun. I really
enjoy it.

• I think the competition was a good idea, since it gave a
lot of people motivation to work harder on the project.

• The project wasn’t necessarily hard. Meeting the min-
imum requirements was definitely not that much of a
challenge. It was the competitive aspect that provoked
me to do a bit more than what is required.

• The project was fun. (several times)

• Nice project idea, can’t wait until CS3.

• The project was helpful and enjoyable. I liked the way
the class was set up.

• The project is what made this course interesting. Rather
than 4 more individual, disjointed, labs, the project
gave us a chance to put several things we had learned
together into one thing.

• I really like cable car. It’s a creative game, and it was
challenging to design an AI for but yet it was doable.

• I think competition is a great way to foster creativity
and pride in one’s accomplishments.

• This was such a cool project. Not only did we learn
a lot, it was a fun experience. I really enjoyed the
fact that we could write the code the way we wanted.
Overall it was an awesome experience!

• Overall, however, the project was interesting and useful
in demonstrating practical application of programming
skills taught in class.

• I really liked the project and how it related to the course
materials.

• Overall, I believe this project was a very good oppor-
tunity for me to improve my programming abilities.
Along with the algorithms that we covered in class, the
project allowed me to try some new techniques to im-
prove the strategy for the many different parts. With-
out this experience, I don’t think I would be as confident
about my programming abilities as I am following its
completion.

• I guess what I’d like to communicate is that while I
don’t think I learned much in terms of coding or al-
gorithms over the course of this project, I learned an
incredibly important design lesson, which was not to
over-complicate things. I’d say this project provides a
good testing grounds for students with some self-taught
programming knowledge, or students with knowledge

from prior courses, to realize what parts of their cur-
rent programming strategies are stupid.

• It was tough. I barely pulled through. Probably worth
it.

We encountered several negative comments as well. Mainly
they were about team collaboration and not specific to this
project, thus we do not cite them here.

We also report preliminary evaluation results stemming
from a post-quarter survey from winter 2011/12. The stu-
dents responded to a list of statements with their sentiments
ranging from “not true at all” to “very true”. Out of 217 stu-
dent responses, 152 students (70%) agreed with “Having to
develop the algorithms helped me to see that the project was
more than just programming.”; 139 students (64%) agreed
with “I enjoyed the competition aspect of the project.”, 134
students (62%) agreed with“The project helped me to better
understand computer science.”; 132 students (61%) agreed
with “I enjoyed the experimentation with different problem
solving strategies.” The majority of the other responses were
neutral: the disagreeing percentages are 14%, 18%, 19%,
and 18%, respectively. The main project evaluation will
take place in 2012/13; see Section 8.1.

8. FUTURE PLANS

8.1 Formal evaluation
In 2012/13 we will compare strategy design to game devel-

opment. We will split the students randomly into a control
group and study group. The control group will implement
parts of the engine, namely rule enforcement, keeping track
of players in the game, score computation, but not graphics.
The study group will design and implement player strategies
as before. Both groups will need to keep track of the current
game state and implement very similar search algorithms to
generate/verify moves. Both groups will end the quarter
with a voluntary mini competition: Battle Royale for the
study group and a “best engine” for the control group (this
will be judged by a panel of instructors). We will compare
the groups through normal grade keeping but also with be-
fore and after surveys that measure how much they learned
during the quarter, their interest in the project, their moti-
vation to keep improving their code, and their enthusiasm
for computer science in general.

8.2 Programming language support
All the game engines from the previous years ran under

Python 2.6 due to the graphical environment Pyglet that
is, unfortunately, not supported in later versions of Python.
Through a very different approach developed in the sum-
mer of 2012, we have now successfully migrated to Python
3. The new architecture has also allowed us to add a Java
version of the engine. The reason is that the graphical com-
ponent has moved to a web browser, thus minimizing the
amount of code that has to be rewritten when a new lan-
guage is adopted. Once stable, these engines, along with the
supporting documentation, will be available for use by other
instructors and institutions.

8.3 Web interface
In the future, we envision a web site hosting a variety of

tournaments, some devoted to a single course, as well as

21

those where students can try their strategies against those
written by teams from different universities.

9. ACKNOWLEDGMENTS
We gratefully acknowledge NSF funding, award ID

1044721. The Labyrinth and Quoridor engines were devel-
oped by Sean Strout and Paul Solt. The Cable Cars engine
development and overhaul of the Quoridor engine in 2012
was done by Adam Oest.

Additionally, we are thankful for the feedback of our eval-
uation team led by Trudy Howles, with consultants Doug
Baldwin, and Sage Miller.

10. REFERENCES
[1] BoardGameGeek / Gaming Unplugged Since 2000, a

database of player reviews, session reports, images,
and news. http://www.boardgamegeek.com/.

[2] T. Barnes, H. Richter, E. Powell, A. Chaffin, and
A. Godwin. Game2Learn: building CS1 learning
games for retention. In Proceedings of the 12th Annual
SIGCSE Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’07), pages
121–125, 2007.

[3] J. D. Bayliss. Using games in introductory courses:
tips from the trenches. In Proceedings of the ACM
SIGCSE ’09, pages 337–341, 2009.

[4] B. Burd, J. Goulden, B. Ladd, M. Rogers, and
K. Stewart. Computer games in the classroom, or,
how to get perfect attendance, even at 8 am. In
Proceedings of the ACM SIGCSE ’07, page 496, 2007.

[5] D. C. Cliburn. The effectiveness of games as
assignments in an introductory programming course.
In Proceedings of the Thirty-Sixth ASEE/IEEE
Frontiers in Education Conference (FIE ’06), 2006.

[6] D. C. Cliburn and S. Miller. Games, stories, or
something more traditional: the types of assignments
college students prefer. In Proceedings of the ACM
SIGCSE ’08, pages 138–142, 2008.

[7] P. Drake and K. Sung. Teaching introductory
programming with popular board games. In
Proceedings of the ACM SIGCSE ’11, pages 619–624,
2011.

[8] M. Eagle and T. Barnes. Experimental evaluation of
an educational game for improved learning in
introductory computing. In Proceedings of the ACM
SIGCSE ’09, pages 321–325, 2009.

[9] E. El-Sheikh and L. Prayaga. Development and use of
AI and game applications in undergraduate computer
science courses. Journal of Computing Sciences in
Colleges, 27(2):114–122, 2011.

[10] S. M. Haller, B. Ladd, S. T. Leutenegger,
J. Nordlinger, J. Paul, H. M. Walker, and C. Zander.
Games: good/evil. In Proceedings of the ACM
SIGCSE ’08, pages 219–220, 2008.

[11] D. Henn. San Francisco Cable Cars. Queen Games,
2009. http://www.queen-games.de.

[12] M. J. Kobbert. The aMAZEing Labyrinth Board
Game. Ravensburger, 1986.
http://www.ravensburger.com.

[13] M. Kölling and P. Henriksen. Game programming in
introductory courses with direct state manipulation.

In Proceedings of the 10th Annual SIGCSE Conference
on Innovation and Technology in Computer Science
Education (ITiCSE ’05), pages 59–63, 2005.

[14] S. Kurkovsky. Engaging students through mobile game
development. In Proceedings of the ACM SIGCSE ’09,
pages 44–48, 2009.

[15] Z. Kurmas and J. Vanderhyde. Board game project
ideas for CS 1 and CS 2 (abstract only). In
Proceedings of the ACM SIGCSE ’12, page 658, 2012.

[16] S. T. Leutenegger and J. Edgington. A games first
approach to teaching introductory programming. In
Proceedings of the ACM SIGCSE ’07, pages 115–118,
2007.

[17] M. C. Lewis and B. L. Massingill. Graphical game
development in CS2: a flexible infrastructure for a
semester long project. In Proceedings of the ACM
SIGCSE ’06, pages 505–509, 2006.

[18] S. Ludi. The benefits and challenges of using
educational game projects in an undergraduate
software engineering course. In Games and Software
Engineering Workshop, as part of the International
Conference on Software Engineering (ICSE 2011),
2011.

[19] A. Luxton-Reilly and P. Denny. A simple framework
for interactive games in CS1. In Proceedings of the
ACM SIGCSE ’09, pages 216–220, 2009.

[20] M. Marchesi. Quoridor. Gigamic, 1997.
http://www.gigamic.com.

[21] T. McMurchie. Tsuro. Calliope Games, 2004.
http://www.tsuro.com/.

[22] N. Parlante, J. Zelenski, D. Zingaro, K. Wayne,
D. O’Hallaron, J. T. Guerin, S. Davies, Z. Kurmas,
and K. Debby. Nifty assignments. In Proceedings of
the ACM SIGCSE ’12, pages 475–476, 2012.

[23] M. Savin-Baden. Facilitating Problem-Based Learning.
McGraw-Hill, 2003. Berkshire, UK.

[24] M. Savin-Baden and C. H. Major. Foundations of
Problem-Based Learning. McGraw-Hill, 2004.
Berkshire, UK.

[25] D. L. Schuster. CS1, arcade games and the free java
book. In Proceedings of the ACM SIGCSE ’10, pages
549–553, 2010.

[26] B. Stephenson and C. Taube-Schock. QuickDraw:
bringing graphics into first year. In Proceedings of the
ACM SIGCSE ’09, pages 211–215, 2009.

[27] J. Summet, D. Kumar, K. J. O’Hara, D. Walker,
L. Ni, D. S. Blank, and T. R. Balch. Personalizing
CS1 with robots. In Proceedings of the ACM SIGCSE
’09, pages 433–437, 2009.

[28] K. Sung, M. Panitz, S. A. Wallace, R. Anderson, and
J. Nordlinger. Game-themed programming
assignments: the faculty perspective. In Proceedings of
the ACM SIGCSE ’08, pages 300–304, 2008.

[29] K.-J. Wrede. Carcassonne. Rio Grande Games, 2000.
http://www.riograndegames.com/.

22

